Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pu-Zhou Hu, Jian-Ge Wang, Lu Wang, Jun-Qing Chen and Bang-Tun Zhao*

Department of Chemistry, Luoyang Normal University, Luoyang 471022, People's Republic of China

Correspondence e-mail: zbt@lynu.edu.cn

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.002 Å R factor = 0.024 wR factor = 0.068 Data-to-parameter ratio = 18.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4,5-Bis(carboxymethylsulfanyl)-1,3-dithiole-2-thione monohydrate

In the crystal structure of the title compound, $C_7H_6O_4S_5 \cdot H_2O$, a chain forms along the *b* axis *via* weak $S \cdots S$ interactions. The structure is further stabilized by an extensive network of $O-H \cdots O$ hydrogen bonds in the *ac* plane, giving an interleaved supramolecular architecture. Received 5 April 2006 Accepted 20 April 2006

Comment

Tetrathiafulvalene (TTF) and its derivatives are the subject of intense interest in materials chemistry, crystal engineering and supramolecular chemistry (Segura & Martin, 2001). 1,3-Dithiole-2-thiones, important precursors to TTF derivatives, have also attracted attention (Chen *et al.*, 2005; Fabre, 2004). We report here the structure of the title compound (I) (Fig. 1), which was prepared by the reaction of di(tetraethyl-ammonium) bis(1,3-dithiol-2-thione-4,5-dithiolate)zincate and BrCH₂COOH in the presence of NaOH (Wang *et al.*, 1998).

ion of Crystallography A

© 2006 International Union of Crystallography All rights reserved

Figure 1

A view of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The one-dimensional chain-like structure of (I), formed by $S \cdots S$ interactions (dashed lines) along the *b* axis.

In the crystal structure, intermolecular $S \cdots S$ interactions $[S3 \cdots S4 = 3.5551 (5) \text{ Å}]$ link the molecules into a chain along the *b* axis (Fig. 2). In addition, an extensive network of hydrogen bonds stabilizes the crystal packing in (I) (Table 1). Each carboxylate group forms inversion-related dimers through intermolecular $O-H\cdots O$ hydrogen bonds. These are further interconnected by hydrogen bonds to and between the solvent water molecules (Fig. 3). This hydrogen-bonding network combines with the weak $S \cdots S$ interactions to build an interleaved three-dimensional supramolecular architecture (Fig. 4).

Experimental

Di(tetraethylammonium) bis(1,3-dithiol-2-thione-4,5-dithiolate)zincate (700 mg, 1.0 mmol) in acetonitrile (15 ml) was mixed with BrCH₂COOH (0.84 g, 6 mmol), NaOH (0.26 g, 6.5 mmol) and H₂O (7.5 ml) and heated under reflux for about 20 h. CH₃CN was removed *in vacuo* and HCl (36%, 25 ml) was added with cooling to give red crystals. These were dissolved in dilute NH₃ and then HCl (36%) was added slowly to give the product (yield 74.4%, m.p. 445–447 K). ¹H NMR (250 MHz, DMSO- d_6 /TMS, δ , p.p.m.): 4.37 (broad, COOH), 3.84 (*s*, CH₂). Recrystallization from ethanol at room temperature over a week gave red block-shaped crystals suitable for X-ray analysis.

Crystal data

 $\begin{array}{l} C_{7}H_{6}O_{4}S_{5}\cdot H_{2}O\\ M_{r}=332.43\\ \text{Monoclinic, }P2_{1}/c\\ a=12.5548\ (10)\ \text{\AA}\\ b=10.8325\ (8)\ \text{\AA}\\ c=9.5073\ (7)\ \text{\AA}\\ \beta=104.577\ (1)^{\circ}\\ V=1251.37\ (16)\ \text{\AA}^{3} \end{array}$

Data collection

Bruker APEX-2 CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.767, T_{\rm max} = 0.857$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.068$ S = 1.052859 reflections 156 parameters H-atom parameters constrained Z = 4 $D_x = 1.765 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.93 \text{ mm}^{-1}$ T = 291 (2) K Block, red $0.30 \times 0.19 \times 0.17 \text{ mm}$

6519 measured reflections 2859 independent reflections 2569 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.011$ $\theta_{\text{max}} = 27.5^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0386P)^2 \\ &+ 0.2783P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Figure 3

The extensive network of interpenetrating O-H···O hydrogen bonds (dashed lines) in the *ac* plane. Atoms labelled with the suffixes A-F are at the symmetry positions (A) x, y, z; (B) -x + 1, -y + 1, -z + 1; (C) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (D) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (E) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (F) $x, -y + \frac{5}{2}, z + \frac{1}{2}$.

Figure 4

The crystal packing in (I). Hydrogen bonds and intermolecular $S\!\cdots\!S$ interactions are drawn as dashed lines.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H2W\cdots O5^{i}$	0.87	2.01	2.782 (3)	147
$O5-H1W \cdot \cdot \cdot O2^{ii}$	0.87	2.47	3.111 (2)	131
$O5-H1W\cdots O3^{ii}$	0.87	2.24	2.8797 (19)	130
$O4-H4\cdot\cdot O3^{iii}$	0.82	1.91	2.7236 (16)	172
$O1{-}H1{\cdots}O5^{iv}$	0.82	1.87	2.6553 (19)	161

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y - 1, z.

H atoms in the solvent water molecule were located in a difference Fourier map and their distances were subsequently restrained to O– H = 0.85 Å and H···H = 1.45 Å. Other H atoms were refined using a riding model, with C–H = 0.97 Å and $U_{\rm iso} = 1.2U_{\rm eq}(\rm C)$, and O–H = 0.82 Å and $U_{\rm iso} = 1.5U_{\rm eq}(\rm O)$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2004); program(s) used to solve

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2004); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Fundation of Henan Province (grant Nos. 2004601012 and 0511020100), which is gratefully acknowledged.

References

Bruker (2004). APEX2 (Version 1.027), SAINT (Version 7.12a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, T., Liu, W.-J., Cong, Z.-Q. & Yin, B.-Z. (2005). Chin. J. Org. Chem. 25, 570–575.
- Fabre, J. M. (2004). Chem. Rev. 104, 5133-5150.
- Segura, J. L. & Martin, N. (2001). Angew. Chem. Int. Ed. 40, 1372-1409.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wang, C., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615–1618.